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Stability of the replica-symmetric solution for the information conveyed by a neural network
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The information that a pattern of firing in the output layer of a feedforward network of threshold-linear
neurons conveys about the network’s inputs is considered. A replica-symmetric solution is found to be stable
for all but small amounts of noise. The region of instability depends on the contribution of the threshold and
the sparseness: for distributed pattern distributions, the unstable region extends to higher noise variances than
for very sparse distributions, for which it is almost nonexistgg1.063-651X98)02003-Q

PACS numbd(s): 87.10+€, 84.35+i, 89.70+c

[. INTRODUCTION Each output cell receiveS; (which we will take to be of the
order of 10) connections from input layer cells:

Advances in techniques for the formal analysis of neural
networks[1-5] offer insight into the behavior of models of _ _
biological interest. Of particular interest are methods which Cije{0.T, (epN=C; (C=(C;). @
allow the calculation of the information that can be conveyed
by a given neural structure, as these offer both useful intui- The mean value across all patterns of each synaptic
tions and the prospect of conducting pertinent experimentweight is taken to be equal across synapses, and is therefore
[6]. The replica trick 7] has been used to achieve this in thetaken into the threshold term. The synaptic weighjsare
case of binary unit$5] and threshold-linear units8,9], by  thus of zero mean, and varianog (all that affects the cal-
appealing to an assumption of replica symmetry. In the caseulation is the first two moments of their distributipn
of binary units with continuous inputs, the validity of the
replica-symmetric ansatz is justified by the duality with the (32 =0? )
Gardner calculation of the storage capacity for continuous " I
couplings [2,5,10. We now analyze the stability of the
replica-symmetric solution for mutual information in a net- The average of the mutual information
work of threshold-linear units.

The model describes a feedforward network of threshold-

linear units with partially diluted connectivity. This is a sim- 1({ ni},{gj})=f 11 dnif IT d&P{ 7},

pler version of the calculation described[#9]. In the cal- i ]

culation considered here, there is only one mode of operation PUnhLED)

(which we might call “transmission), as opposed to the X{&1In 1o (6)
division into storage and recall modes in that calculation. P{mbH P&

There areN cells in the input layer, ant¥ (proportional to

N) in the output layer. The limit of interest N— . over the quenched variableg , J;; is written using the rep-

{m} are the firing rates of each celin the output layer. |ica trick as
The probability density of finding a given firing pattern is

taken to be 1
(1(7,€))c,9= lim ﬁ<fd77 d¢ P(7,€)
PUnhHIT dm=I1 P,(m)dn. D "o
| ' P(n,ar }>
—[P . 7
Each input cell is thus assumed to code independent infor- XH P(n) LP(&)] . @

mation.
1£;} are the firing rates produced in each cell in the output
layer. They are determined by the matrix multiplication of
the pattern{7;} with the synaptic weightg;; , followed by
Gaussian distortion, thresholding, and rectification.

The calculation is valid only for nonzero noise variance,
and it will be seen that the only region in which the solution
is not well behaved is that of very low noise variance.

* Il. CALCULATION OF MUTUAL INFORMATION

&= &0+ 2 ciidijm+e| =[§]17, )
! First, introducing replica indicesx=1,... nh+1, and
5 5 breaking the integral ovef into subthreshold and supra-
(())) =0 (3 threshold components, we observe that
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- f:d"é I1 ( f dn“<P<n“,E“>lga=z>c,J)]. ®)

This allows us to treat both terms of E@) in the same manner. To obtain the probability den(isYr;“,E“)), we use Dirac
S functions to implement the constraints defined by &

<P(77",E“)>c,a=< e sk ”HH §E =t oty ni- F’({m“})”“> , ©
where
_ﬂ —u?2
Du—\/ﬂe . (10

Using the integral form of the Dirad function introduces a Lagrange multiplie¢*. The integrals over the noise and
interaction distributions are performed, and the quenched average over the connections performed in the thermodynamic limit,
so that

~ dx” ~ 1 o5C
<P<n,§>”“>=f (JH 2—;)exp{ij2a X(E=t0=3 2 xxf| oot o 2 il

P({ﬂi“})”“} . (1D
where é,4 is the Kronecker delta. A Lagrange multiplier
B 1 a B
z¢ N Z 7 M (12

is introduced using the integral form of the Diradunction via an auxiliary variablg “#. We then obtain

~ dz¢dz“ dz*PdzP
CB = [ [T G || T o o NS 2een S, 2070-S 78 (- 5, 793 o

-5 JE (60— £0)Ep(E8— &) — —Tr In M](zw) (DR ({ i), (13)
|
whereM = 02I+UJCZ andE=M"1. Z is the matrix with —NHg(Z%Z*P)—MG(z%,2%F), (14
elementsz®?, and(ap) is the pairaB, a+ .
Thus
where
i dzedz* _ - _
(I)=I|m[f (H )EX[{INE 27— NHA(Z%) e HA(Z“)zf dy P(n)ex;{—Z z“nz), (15)
n—0 @ 4] n o
. dzédz¢
~Maz29 |~ 27N e’”B(i“ff“ﬁ):f (H dn“P(”a))eXp(_E Z%(9)?
7\ « «
dzeBdz s _
X z )ex;{lNE 27 +iN D, z9F7 B -> z“ﬁn“nﬁ), (16)
(am 27/N (aB) (aB)
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e 9(z%,z4P) =g (1ATrIn M‘f \/_ exp- 5 (f &0)?

s[5

1 ~ ~
xex;{— E aEB (fa_fo)Ea/a(gﬁ_fo)H .

17)

Ill. REPLICA-SYMMETRIC SOLUTION

The assumption of replica symmetry can be written

zi=23P=zo0(n), 1Zx=Zpa(N),
Zg:ZOB(n)’ iﬁig:'ZOB(n)r (18)
z8P=z,(n), iZgP=-Zy(n).
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]

><In<exp<—lzl77 s\/"_n)> : (20)

The saddle-point method is utilized in the thermodynamic

limit, yielding the saddle-point equations

Zoa=(1") (193
EOAZO, (19b)
Zog=(7") (199
Zos=0, (190
[ oo [ 22| B s
Zl_ . S n \/E_l ex 2 n S 217]

n
><In<exy{—— —S\/rn>> : (19¢
Z,=—oCr o o o
! J (pe+0g)? Jpe+as

W

Pe | Vpg+ds

* _fo_t@)]
+| Dtf1+mn ¢ —2—"F

I i

_fo_t@> _3,2( t(pg+0ds) ]
Xo| —F—|P bot ——| 1,

"( N A SN

(19f)

and the expression for the information per input cell

. 1 _
(i)=rG(pa.,ga)+ 5 2,2,—rG(pg,0s)

where
3 3 o
G(p!q): Z(pr:_g)B/Z g \/# 2 (1+|n p)¢ \/m
® —&—Nﬁ) (—&—Nﬁ)
+ | Dtop| ————|In ¢| ———| (21
I i
and
(X(n)>n=j dn P(9)x(7),
n
o= " ps,
1
ag(X)= \/? e’lez, (22
ar
pa= 02, pB:U§+U§C(ZOB_Zl)y
QA:UECZOAv qB:O-.%CZl-

We refer tor=M/N as the anatomical divergence.

This expression must in general be evaluated numerically.
However, considering some limiting cases can give us some
insight into the behavior of the solution. In particular, the
limit of linear processing can be obtained by takigg—
+c0. In this limit, Eq. (19f) reduces to
aﬁCr

Zl—>

Ps @3

The information per neuron obtained in the linear limit is

1 P 1
<|>—>§rlna+§zlzl

0 1~ 5
- _xDs ex —52177 -5
1_
X In{ ex —Ezlnz—s

The information obtained in this limit is bounded by that
which would be obtained from a simple Gaussian channel
calculation, where we consider the channel

),
Zm)> . (24

n

& :Ei CijJijmit e, (25

and perform the annealed and quenched averages to obtain
the signal varlanceJC(<772>,7 (77)2) and information per
input cell
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2 2 2
o3C({(7%),—(m)?3) :
| Gaus=5 | 1+ Bl >;’ )y : (26) 04 )
¢ 0.35}
The Gaussian channel information provides an upper limii 0.3
corresponding to the optimaj distribution (for transmitting
maximal information given a constraint on the signal pawer 0.25¢
and no dependence upon the same inputs of the output cell 0
Within the linear limit, we can consider the special case 2
of high noise variancéow signal to noise ratip As o> — o, 0.15+
0§Cr 27 0.1
Z1~ ’
Yool 0.05f
0 ) 1 1 1
and 0 0.2 0.4 ,06 0.8 1
a o? (HZ%)
21=(n)*+0(Zy). (28) Gaussian
The information therefore falls to zero as L
12 3 ---  threshold-linear
2 2 2 -« k —— linear
Cr - v
(i)~ 7 (<7; >;] i n) ) (29 N | Gaussian channel
(o X

€

i.e., inversely with noise variance, as one would expect. We
thus can see that for linear neurons with low signal to noise
ratio, the transmitted information approaches the Gaussia
channel limit[It can also be showfwe have done so for the
case of a Gaussiandistribution, that ag — 0, the Gaussian
channel bound is also reachgd.

The numerical solution of the mutual information expres-
sion, as a function of the noise variance, is shown in Fig. 1 ,
both for the case of linear units and for units with a threshold 0 0.2
of £&,=—0.4, representing threshold-linear behavior. This is b
shown for a binary pattern distribution of sparsenass
where the sparseness of a distribution is a mean-invariant FIG. 1. Mutual information, measured in bits, as a function of

0.4 0.6 0.8 1
o’ (HZ)

measure of spread and is defined in general as noise variance. The dashed line is for a threshgjed—0.4,
whereas the solid line is for the limit of linear neurons. The dot-
<7]>2 dashed line indicates the simple Gaussian channel for comparison.
a= _2_’7 (30) The entropy of the input pattern distribution is indicated by the
(m >7; horizontal dotted line(a) Input pattern distribution sparseness of

0.05. (b) Sparseness of 0.50.
This measure is “more sparse” for smalley and reduces to
t_he fraction of un_its “on” in the case of a binary distribu- IV. STABILITY OF THE REPLICA-SYMMETRIC
tion. The Gaussian channel bound appears on the same SOLUTION
graphs for comparison.

The mutual information should be bounded by the pattern The stability of the replica-symmetric solution is analyzed
entropy as the noise variance becomes very small. As thefter the style of de Almeida and Thoulegkl]. For the
noise variance decreases, the replica-symmetric solution agelution for free energy this was addressed in the context of
proaches this bound in both the linear and threshold-lineaHopfield-Little type autoassociative neural networkg 1n,
cases. It can be seen, however, that for very small noisend for an autoassociator with threshold-linear units and for
variances, the replica-symmetric solution changes directioa threshold-linear variant of the Sherrington-Kirkpatrick
and crosses this physical boundary. Inspection of @4) model in[12]. For the solution for another quantity, the
reveals divergence of the mutual information solution in theGardner volume, this was addressed 24 for Ising (= 1)
limit ¢2—0; this is in keeping with our intuition from the neurons. In contrast, here we are determining the stability of
beginning that the calculation should not be valid in the dethe solution for mutual information in a network comprised
terministic limit. However, for such low noise variance the of threshold-linear neurons, although the technique proceeds
information has essentially saturated in any case. Fovery similarly.
threshold-linear neurons, the solution is also unstable to Fluctuations in the transveréeeplica-symmetry breaking,
replica-symmetry-breaking fluctuations for relatively low RSB) and longitudinalreplica-symmetric, REdirections are
noise variance, as will be discussed in the next section.  decoupled, and hence can be analyzed separately. Longitudi-
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FIG. 2. The behavior of the replicon-mode eigenvalueas a function of noise variancé) Input sparseness=0.05,(b) a=0.10,
(c) a=0.50. Ineach of these graphs the solid line indicates the eigenvalue of thregfld 0.4, thedashed curvé,= 0.0, thedot-dashed
curve ¢,=0.4, and thedotted curveé,=0.8. Thereplica-symmetric solution is unstable in regions where these curves lie above the
horizontal dotted line. In cas@), the £,=0.8 line lies below the region examined in the graph.

nal fluctuations can be disregarddd,, 13 if a unique saddle

There aren(n+1)/2 independent variablez*?, and the

point is obtained, which appears to be the case. We wilkame number of independent’. T is thus ann(n+1)

therefore concentrate upon transverse fluctuations.

Xn(n+1) matrix.

We wish to consider small deviations in the saddle-point The transverse eigenvalues of this matrix are given by the

parameters about the replica-symmetric saddle point,
2%P=7,4 62°F,
7 B=7,+ 67%F. (31

Quadratic fluctuations in the function

B(z%7*z*FZ “B)=iND, zZ*+iN D, z°F7B
a (ap)

~NH(Z* 7P~ MG(z*,2°F)
(32

give us the stability matrix

i B B
9z°Pozr° 9z*Pa(iZ 7°)
r= B B
| 9(iZ%F) 027  a(iZ*F)a(iZ7°)
B [ AleB)(vd) 5(aﬁ)(75) @3
__5<aﬁ)(75) B(aB)(¥d) |»

Where 6(,p),(ys)= 0ayOpsT 6050y IN cONtrast to previous

eigenvalues of the matrix

( 1 )\B), (39

whereh, and\g are the transverse eigenvalues of the sub-
matricesA(*#)(79) andB(*A)(¥9) | respectively. Calculation of
these involves consideration of the symmetry properties of
the submatrices, and is detailed in the Appendix. The eigen-
value equations reduce to

Apa+C=NA\,
A (35)

1+Chg=CA.

We thus have the two replicon-mode eigenvalues

Ne=3(NatAg) = Vi(Aa—Np)?+1. (36)

For stability, the product of the eigenvalues must be non-
negative. A further subtlety is introduced hebke, can be
seen to be>0 irrespective ofo? or a. A_, on the other
hand, changes sign, moving from negative to positive for
smallerai. However, intuitively we expect, from the anal-
ogy of the noise with the “temperature” parameter in other
models of neural networK4] and physical systenj44] that
if replica-symmetry breaking is to set in, it will do so at low

calculations based on quantities such as free energy, the emeise variances. This is confirmed by the eminently sensible

pression for mutual information involvea+1 replicas.

behavior of the mutual information curves of Fig. 1 at me-
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These equations have been numerically solvedxfor.
Figure 2 shows the behavior af  for a range of sparseness
and thresholds. Where the eigenvalue passes above the zero
axis (dotted ling, a phase of RS instability is indicated. Fig-
ure Za) is for the situation of quite sparse coding of the
patterns. As the noise is reduced from the high noise region,
in which the RS solution is stable, the eigenvalue changes
sign, and an unstable region is entered. In the case of thresh-
old £,=0.4, which represents only a very small degree of
thresholdlike behavior, the eigenvalue can be seen to curve
back and change sign again at lower noise values still. Due
to nonconvergence of numerical integration, it is not possible
to examine extremely small noise values; therefore it is not
clear from this diagram whether the eigenvalue also falls
below zero again for the other curves plotted in this figure, or
if it instead has a finite value at zero noise. However, any
region of RS stability at noise variances this low would ob-

FIG. 3. A phase diagram showing the critical noise variance agiously be irrelevant for the same numerical reasons.

a function of the threshold parametgy—the largeré, is, the more
linear the regime. Solid curve, sparsenass0.05; dashed curve,

a=0.10;dot-dashed curveg=0.20;dotted curvea=0.50.

It is apparent from Figs. (®) and Zc) that as the input
distribution is made less sparéa is increasey] the critical
amount of noise below which instability arises increases.
This will be discussed again shortly. Another effect that can

dium to high noise, but nonphysical behavior at very lowbe seen in Figs.(3) and Zb) is that, as the neurons are made

noise values. It can be concluded that, as occuf4 2], a

more linean&, is increasey the critical noise first rises, then

sign reversal has been introduced due to the integration coffialls. This becomes more clear after plotting a phase diagram

tour, which must be corrected.

0.16

014.stab.|e ...............
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of noise againsg, (Fig. 3). For lowa (sparse distributions
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FIG. 4. The phase diagram for information transmissionyfe anda§= 1/C. (a) Thresholdéy= —0.4.(b) Threshold¢y=+0.0.(c)

Thresholdéy,=+0.4.(d) Thresholdé,=+0.8.
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where
0.16
0.14 )
SRR = d¢ (6—&)

§ o1 A (X(&)e+= f = x(£)exp- ———,
Ec 04 L 0 27og 20%
% 0.08 ! Lo

0.06 5 Lo oi= 02+ 05CU(n?),—(n)2). (38)

0.04 'i ‘

0 0.2 0.4 06 0.8 The lines of marginal stability foé,=—0.4, 0.0, 0.4, and
a4 0.80 are replotted in Fig. 5 against the output sparseness.

Although the phase diagrams look fairly similar when plot-

FIG. 5. The marginal noise variance as a functon of the sparse¢ted as a function of input sparseness, they occupy different
ness of theoutputdistribution. The solid line represents the curve regions of the output-sparseness domain because of the
for £,=—0.40 [the same situation as Fig(a}, the dashed curve thresholding. It is also worth noting that because of the map-
£0=0.0, thedot-dashed curvé,=+0.40, and thedotted curve  ping performed by E¢(37), the boundaries of the regions in
&=+0.80.Note that for§,=0.0 the output sparseness is fixed at Fig. 4 do not necessarily form the boundaries of the regions
1/, as explained in the text, so this particular line is not informa—in the output_sparseness p|ane, which in some instances con-
tive about the relative region of instability. stitute points from inside the above curves.

For neurons operating in the threshold-linear regiie&

the critical noise rises, falls, and then curves back around ogurve, £,<0.0), where output sparseness is effectively con-
itself—after the neurons become sufficiently linear, there isstrained by the thresholding, the stability characteristics are
no more region of instability. As the pattern code becomegyualitatively as has been described earlier. &g¢ 0.0, it is
less sparse, at first the region of instability merely expandsapparent from Eq$37) and(38) that the output sparseness is
Whena reaches a certain value, however, the edge of theonstant(regardless of the input sparseneas a value of
unstable region no longer curls in on itself, but extends outq /. As &, is increased above zero, the output becomes less
wards. At a sparseness of 0.5, for instance, the critical noisgparse, and the line of marginal stability is flipped horizon-
thus first rises with increasing linearity, taking longer to tally (because in this range the entropy is higher for smaller
reach its peak than for more sparse diStribUtionS, then fa”Saout; r|ght Curves_ Assuming that the sparseness of Coding
and finally levels off and decreases slowly. The sparseness gf connected sets of neurons in the brain tends to be similar,
which this change in behavior is exhibited is independent othe former curve(for threshold-linear behaviprmight be
the parameters of the system, and can be seen from Fig. 3 ¢&nsidered the more biologically applicable, with the thresh-

lie somewhere between 0.2 and 0.5. old in this model incorporating functionally the constraint on
In the special case of the linear limit, in whigg—=, N\ the degree of neural activity.

disappeargsee the Appendjx and stability is assured. For

finite &3 and above the coefficient of sparseness referred to in

the preceding paragraph, though, there is a distinct and rea- V. CONCLUSIONS

sonably large region of instability. . ) . ) .

The resulting phase diagrams are shown in Fig. 4. Figure This paper has detailed the replica-symmetric solution for
4(a) shows the situation fof,= — 0.4, which corresponds to the mformgtlon transmitted by a fgedfo_rward ngtwork of
threshold-linear behavior. Ag, is increasedFigs. 4b)— thre_sholq-lmear neurons, and _examlned its stablll_ty to fluc-
4(d); the neurons are made progressively “more lindathe ~ tuations in the direction of repllqa-s_ym_metry bre_aklng. It ap-
critical noise variance at which instability of the RS solution Pears that for sparse pattern distributions, replica-symmetry
sets in first increasesl and then decreaseS, as would be é;(_eaking Only sets in at noise variances SUfﬁCiently small that
pected from Fig. 3. In Fig. @), the line of critical noise W€ Might reasonably consider them to be “beyond the realm
variance abruptly stops aa~0.23: at this point, the of blologlcal interest,” at least for noisy cortical cells. We
replicon-mode eigenvalue passes below the zero axis, arRflieve that, quite importantly, there is every reason to ex-
stability is assured. In all cases, it is apparent that in particuPect that these results carry over to the slightly more com-
lar for very sparse distributions, the replica-symmetric equaplicated “Schaffer collateral” calculation described[i8,9].
tions are valid down to quite low noise. For less sparse codIhere is thus reason to feel confidence in the replica-
ing, where the pattern entropy is significantly higher, theSymmetric assumptlo'n when analyzmg neural networks in
replica-symmetry-broken solution would seem to be relevan@féas such as the hippocampus which are known to code
for higher noise variances. sparsely. o o

It should be noted that the sparseness of the distribution of When more distributedess spargeencoding is used, the

outputs is not the same as that of the inputs. This can pautual information solution is prone to instability to replica-
determined by symmetry-breaking fluctuations at higher amounts of noise

than in the sparse case. It is not clear from the current analy-
<§>2+ si_s what the quantitative effect of broken re_plica symmetry
aout:2_§, (37)  might be, or what the form of the exact solution would be in
(6% e+ that casde.g., the Parisi ansaf45]). Care should therefore
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be taken when analyzing the information conveyed by net- ( 12 kt2
i istri i +kt| ——— —&)——|, (A2
works using more distributed encoding. o+ ) (§=&)— |, (A2)
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APPENDIX aptra) VP
In this appendix the transverse eigenvalues of the submamdp,q are herepg andqgg from Eq. (22).
trices A®®(79) and B(*A)(¥9) are calculated. BotA(A)(¥9) We have to solve the eigenvalue equation
andB(*#:(v9) have three different types of matrix elements
depending on whether none, one, or two replica indices of A=\ (Ad)
the pair(aB) equal those of the pairys). The three possible '
valuesA(*#:(») can take are The eigenvectorss have the column-vector form
B o3Cr (q2+2pQ)? { y=({6z""}) (a<p=1,...n+1). (A5)
T 979B 798 ~ 7 .
9270z AW pi(p+a)* We now proceed as described[ItL]. There are three classes
of eigenvectorgand corresponding eigenvaljiesthose in-
X (6= &) ex;{ _ (& 50) f dt variant under interchange of all indices, those invariant under
0 2(p+Qq) Nz interchange of all but one index, and those invariant under
interchange of all but two indices. These last describe the
22 1 transverse mode, in which we are interested.
X[(E=&0) (2,0 ¢, Let us consider fluctuations of the form
8z°F=A*F  (a<B=1,.n+1), (A6)
_ ¥B ojCr (g?+2pQ)? f dé .
Q= 32757~ aw p*p+a)* | Jo 2 with
d Aa,B:A’ a,ﬂ#ao,ﬁo
X (6= &) exp[ i +J —
2(p+q) w 2
2—n
s 2 AHOB:AQBOZTA, a#ao,ﬂo (A?)
X[(€= &)1 (3D E)]e-(5.D)
(2—n)(1—n)
A®BPo=-— "~ T A
(B#y), (A1) 2
. ensuring orthogonality between the eigenvectors describing
B B _o5Cr (92+2pq)? | (= dé¢ RS and RSB fluctuations. As withi1l], we have for
" 2P AW pipr )t | Jo Vam (¢ Al@B).(v9) gn eigenvalue
(6-&)% (= dt Aa=P—2Q+R, A8
- &) exp[—2 (¢ S (#8)
(p+0q) - 2
with in this casg 3(n+1)(n—2)]-fold degeneracy, an@,
4 1 Q, andR as described above.
f)lg-(z. ) (a7 v.B#3), For B(#A):(v9) "we consider fluctuations
where[x(&)]¢-(k,t) is defined as 67%F=cA? (a<pB=1,...n+1) (A9)

and obtain similarly the eigenvalue

_[° d& LIPS
[X(f)]g(k,t)—fwﬂx(é)exl{ 2p(§ £o) \g=P'—2Q'+R’, (A10)
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where / 7B " s
, R :W=ﬁwm[n]n(z.t),
B o
P’= G2 P a(ZP) f_th[ﬂz]i(%:t), and[x(7)],(k.t), the weighted pattern average, is defined
as
Q= s = | DUALAOIEGD,  Xlk0= [ o POOiexd - SF-i,
0(z Pya(iz @) ) .ot A3 UL, 1K, 47 Pimx(7 5217 17|
(A1) (AL2)
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