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Stability of the replica-symmetric solution for the information conveyed by a neural network
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The information that a pattern of firing in the output layer of a feedforward network of threshold-linear
neurons conveys about the network’s inputs is considered. A replica-symmetric solution is found to be stable
for all but small amounts of noise. The region of instability depends on the contribution of the threshold and
the sparseness: for distributed pattern distributions, the unstable region extends to higher noise variances than
for very sparse distributions, for which it is almost nonexistent.@S1063-651X~98!02003-0#

PACS number~s!: 87.10.1e, 84.35.1i, 89.70.1c
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I. INTRODUCTION

Advances in techniques for the formal analysis of neu
networks@1–5# offer insight into the behavior of models o
biological interest. Of particular interest are methods wh
allow the calculation of the information that can be convey
by a given neural structure, as these offer both useful in
tions and the prospect of conducting pertinent experime
@6#. The replica trick@7# has been used to achieve this in t
case of binary units@5# and threshold-linear units@8,9#, by
appealing to an assumption of replica symmetry. In the c
of binary units with continuous inputs, the validity of th
replica-symmetric ansatz is justified by the duality with t
Gardner calculation of the storage capacity for continu
couplings @2,5,10#. We now analyze the stability of th
replica-symmetric solution for mutual information in a ne
work of threshold-linear units.

The model describes a feedforward network of thresho
linear units with partially diluted connectivity. This is a sim
pler version of the calculation described in@8,9#. In the cal-
culation considered here, there is only one mode of opera
~which we might call ‘‘transmission’’!, as opposed to the
division into storage and recall modes in that calculati
There areN cells in the input layer, andM ~proportional to
N! in the output layer. The limit of interest isN→`.

$h i% are the firing rates of each celli in the output layer.
The probability density of finding a given firing pattern
taken to be

P~$h i%!)
i

dh i5)
i

Ph~h i !dh i . ~1!

Each input cell is thus assumed to code independent in
mation.

$j j% are the firing rates produced in each cell in the out
layer. They are determined by the matrix multiplication
the pattern$h i% with the synaptic weightsJi j , followed by
Gaussian distortion, thresholding, and rectification.

j j5Fj01(
i

ci j Ji j h i1e j G1

5@ j̃ j #
1, ~2!

^~e j !
2&5se

2. ~3!
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Each output cell receivesCj ~which we will take to be of the
order of 104! connections from input layer cells:

ci j P$0,1%, ^ci j &N5Cj ~C[^Cj&!. ~4!

The mean value across all patterns of each syna
weight is taken to be equal across synapses, and is there
taken into the threshold term. The synaptic weightsJi j are
thus of zero mean, and variancesJ

2 ~all that affects the cal-
culation is the first two moments of their distribution!,

^~Ji j !
2&5sJ

2. ~5!

The average of the mutual information

I ~$h i%,$j j%!5E )
i

dh iE )
j

dj j P~$h i%,

3$j j%!ln
P~$h i%,$j j%!

P~$h i%!P~$j j%!
~6!

over the quenched variablesci j , Ji j is written using the rep-
lica trick as

^I ~h,j!&c,J5 lim
n→0

1

n K E dh dj P~h,j!

3H FP~h,j!

P~h! Gn

2@P~j!#nJ L
c,J

. ~7!

The calculation is valid only for nonzero noise varianc
and it will be seen that the only region in which the soluti
is not well behaved is that of very low noise variance.

II. CALCULATION OF MUTUAL INFORMATION

First, introducing replica indicesa51, . . . ,n11, and
breaking the integral overj into subthreshold and supra
threshold components, we observe that
3302 © 1998 The American Physical Society
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^I ~h,j!&c,J5 lim
n→0

1

n H E dhF 1

P~h!G
n

)
a

S E
2`

0

dj̃a^P~ha,j̃a!uha5h&c,JD
1E dhF 1

P~h!G
nE

0

`

dj̃ )
a

^P~ha,j̃a!uha5h, j̃ a5 j̃ &c,J2)
a

S E
2`

0

dj̃aE dha^P~ha,j̃a!&c,JD
2E

0

`

dj̃ )
a

S E dha^P~ha,j̃a!u j̃ a5 j̃ &c,JD J . ~8!

This allows us to treat both terms of Eq.~7! in the same manner. To obtain the probability density^P(ha,j̃a)&, we use Dirac
d functions to implement the constraints defined by Eq.~2!:

^P~ha,j̃a!&c,J5K E F)
j

DS e j
a

se
D GF)

i j
DS Ji j

sJ
D G)

j
dF j̃ j

a2j02(
i

ci j Ji j h i
a2e j

aGP~$h i
a%!n11L

c

, ~9!

where

Du5
du

A2p
e2u2/2. ~10!

Using the integral form of the Diracd function introduces a Lagrange multiplierxj
a . The integrals over the noise an

interaction distributions are performed, and the quenched average over the connections performed in the thermodyna
so that

^P~h,j̃ !n11&5E S )
j ,a

dxj
a

2p D expH i(
j ,a

xj
a~ j̃ j

a2j0!2
1

2 (
j ,a,b

xj
axj

bFse
2dab1

sJ
2C

N (
i

h i
ah i

bGP~$h i
a%!n11J , ~11!

wheredab is the Kronecker delta. A Lagrange multiplier

zab5
1

N (
i

h i
ah i

b ~12!

is introduced using the integral form of the Diracd function via an auxiliary variablez̃ ab. We then obtain

^P~h,j̃ !n11&5E S )
a

dzadz̃a

2p/N D S )
~ab!

dzabdz̃ab

2p/N D expH iN(
a

zaz̃ a1 iN (
~ab!

zabz̃ ab2(
a

z̃ a(
i

~h i
a!22 (

~ab!
z̃ ab(

i
h i

ah i
b

2
1

2 (
j ab

~ j̃ j
a2j0!Eab~ j̃ j

b2j0!2
1

2
Tr ln M J ~2p!2~n11!/2P~$h i

a%!n11, ~13!
whereM5se
2I1sJ

2CZ and E5M21. Z is the matrix with
elementszab, and~ab! is the pairab, aÞb.

Thus

^I &5 lim
n→0

H E S )
a

dzadz̃a

2p/N D expF iN(
a

zaz̃ a2NHA~ z̃ a!

2MG~za,za!G2E S )
a

dzadz̃a

2p/N D
3S )

~ab!

dzabdz̃ab

2p/N D expF iN(
a

zaz̃ a1 iN (
~ab!

zabz̃ ab
2NHB~ z̃ a,z̃ ab!2MG~za,zab!, ~14!

where

e2HA~ z̃ a!5E
h
dh P~h!expS 2(

a
z̃ ah2D , ~15!

e2HB~ z̃ a,z̃ ab!5E
h
S)

a
dhaP~ha! DexpS 2(

a
z̃ a~ha!2

2 (
~ab!

z̃ abhahbD , ~16!
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e2G~za,zab!5e2~1/2!Tr ln MH E
0

` dj̃

A2p
exp2

1

2
~ j̃2j0!2

3(
ab

Eab1E
2`

0 S )
a

dj̃a

A2p
D

3expF2
1

2 (
ab

~j̃a2j0!Eab~ j̃b2j0!G J .

~17!

III. REPLICA-SYMMETRIC SOLUTION

The assumption of replica symmetry can be written

zA
a5zA

ab5z0A~n!, i z̃ A
a5 z̃0A~n!,

zB
a5z0B~n!, i z̃ B

a5 z̃0B~n!, ~18!

zB
ab5z1~n!, i z̃ B

ab52 z̃1~n!.

The saddle-point method is utilized in the thermodynam
limit, yielding the saddle-point equations

z0A5^h2&h , ~19a!

z̃0A50, ~19b!

z0B5^h2&h , ~19c!

z̃0B50, ~19d!

z152E
2`

`

DsK S h21
sh

Az̃1
D expS 2

z̃1

2
h22sAz̃1h D L

h

3 lnK expS 2
z̃1

2
h22sAz̃1h D L

h

, ~19e!

z̃152sJ
2CrH j0

~pB1qB!3/2 sS j0

ApB1qB
D

2
1

pB
fS j0

ApB1qB
D

1E
2`

`

DtF11 ln fS 2j02tAqB

ApB
D G

3sS 2j02tAqB

ApB
D pB

23/2S j01
t~pB1qB!

AqB
D J ,

~19f!

and the expression for the information per input cell

^ i &5rG~pA ,qA!1
1

2
z1z̃12rG~pB ,qB!
c

2E
2`

`

DsK expS 2
1

2
z̃1h22sAz̃1h D L

h

3 lnK expS 2
1

2
z̃1h22sAz̃1h D L

h

, ~20!

where

G~p,q!5
pj0

2~p1q!3/2 sS j0

Ap1q
D 2

1

2
~11 ln p!fS j0

Ap1q
D

1E
2`

`

DtfS 2j02tAq

Ap
D ln fS 2j02tAq

Ap
D ~21!

and

^x~h!&h5E
h
dh P~h!x~h!,

f~x!5E
2`

x

Ds,

s~x!5
1

A2p
e2x2/2, ~22!

pA5se
2, pB5se

21sJ
2C~z0B2z1!,

qA5sJ
2Cz0A , qB5sJ

2Cz1 .

We refer tor 5M /N as the anatomical divergence.
This expression must in general be evaluated numerica

However, considering some limiting cases can give us so
insight into the behavior of the solution. In particular, th
limit of linear processing can be obtained by takingj0→
1`. In this limit, Eq. ~19f! reduces to

z̃1→
sJ

2Cr

pB
. ~23!

The information per neuron obtained in the linear limit is

^ i &→
1

2
r ln

pB

pA
1

1

2
z1z̃1

2E
2`

`

DsK expS 2
1

2
z̃1h22sAz̃1h D L

h

3 lnK expS 2
1

2
z̃1h22sAz̃1h D L

h

. ~24!

The information obtained in this limit is bounded by th
which would be obtained from a simple Gaussian chan
calculation, where we consider the channel

j j* 5(
i

ci j Ji j h i1e j , ~25!

and perform the annealed and quenched averages to o
the signal variancesJ

2C(^h2&h2^h&h
2), and information per

input cell
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I Gauss5
r

2
lnF11

sJ
2C~^h2&h2^h&h

2 !

se
2 G . ~26!

The Gaussian channel information provides an upper li
corresponding to the optimalh distribution ~for transmitting
maximal information given a constraint on the signal powe!,
and no dependence upon the same inputs of the output c

Within the linear limit, we can consider the special ca
of high noise variance~low signal to noise ratio!. As se

2→`,

z̃1;
sJ

2Cr

se
2 , ~27!

and

z1.^n&21O~ z̃1!. ~28!

The information therefore falls to zero as

^ i &;
sJ

2Cr~^h2&h2^h&h
2 !

2se
2 , ~29!

i.e., inversely with noise variance, as one would expect.
thus can see that for linear neurons with low signal to no
ratio, the transmitted information approaches the Gaus
channel limit.@It can also be shown~we have done so for the
case of a Gaussianh distribution!, that asr→0, the Gaussian
channel bound is also reached.#

The numerical solution of the mutual information expre
sion, as a function of the noise variance, is shown in Fig
both for the case of linear units and for units with a thresh
of j0520.4, representing threshold-linear behavior. This
shown for a binary pattern distribution of sparsenessa,
where the sparseness of a distribution is a mean-invar
measure of spread and is defined in general as

a5
^h&h

2

^h2&h
. ~30!

This measure is ‘‘more sparse’’ for smallera, and reduces to
the fraction of units ‘‘on’’ in the case of a binary distribu
tion. The Gaussian channel bound appears on the s
graphs for comparison.

The mutual information should be bounded by the patt
entropy as the noise variance becomes very small. As
noise variance decreases, the replica-symmetric solution
proaches this bound in both the linear and threshold-lin
cases. It can be seen, however, that for very small n
variances, the replica-symmetric solution changes direc
and crosses this physical boundary. Inspection of Eq.~21!
reveals divergence of the mutual information solution in
limit se

2→0; this is in keeping with our intuition from the
beginning that the calculation should not be valid in the
terministic limit. However, for such low noise variance th
information has essentially saturated in any case.
threshold-linear neurons, the solution is also unstable
replica-symmetry-breaking fluctuations for relatively lo
noise variance, as will be discussed in the next section.
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IV. STABILITY OF THE REPLICA-SYMMETRIC
SOLUTION

The stability of the replica-symmetric solution is analyz
after the style of de Almeida and Thouless@11#. For the
solution for free energy this was addressed in the contex
Hopfield-Little type autoassociative neural networks in@1#,
and for an autoassociator with threshold-linear units and
a threshold-linear variant of the Sherrington-Kirkpatri
model in @12#. For the solution for another quantity, th
Gardner volume, this was addressed in@2# for Ising (61)
neurons. In contrast, here we are determining the stability
the solution for mutual information in a network comprise
of threshold-linear neurons, although the technique proce
very similarly.

Fluctuations in the transverse~replica-symmetry breaking
RSB! and longitudinal~replica-symmetric, RS! directions are
decoupled, and hence can be analyzed separately. Longi

FIG. 1. Mutual information, measured in bits, as a function
noise variance. The dashed line is for a thresholdj0520.4,
whereas the solid line is for the limit of linear neurons. The d
dashed line indicates the simple Gaussian channel for compar
The entropy of the input pattern distribution is indicated by t
horizontal dotted line.~a! Input pattern distribution sparseness
0.05. ~b! Sparseness of 0.50.
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FIG. 2. The behavior of the replicon-mode eigenvaluel2 as a function of noise variance.~a! Input sparsenessa50.05, ~b! a50.10,
~c! a50.50. Ineach of these graphs the solid line indicates the eigenvalue of thresholdj0520.4, thedashed curvej050.0, thedot-dashed
curve j050.4, and thedotted curvej050.8. Thereplica-symmetric solution is unstable in regions where these curves lie abov
horizontal dotted line. In case~a!, the j050.8 line lies below the region examined in the graph.
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nal fluctuations can be disregarded@11,13# if a unique saddle
point is obtained, which appears to be the case. We
therefore concentrate upon transverse fluctuations.
We wish to consider small deviations in the saddle-po
parameters about the replica-symmetric saddle point,

zab5z11dzab,

z̃ ab5 z̃11d z̃ ab. ~31!

Quadratic fluctuations in the function

B~za,z̃a,zab,z̃ ab!5 iN(
a

zaz̃ a1 iN (
~ab!

zabz̃ ab

2NHB~ z̃ a,z̃ ab!2MG~za,zab!

~32!

give us the stability matrix

G5F ]2B
]zab]zgd

]2B
]zab]~ i z̃ gd!

]2B
]~ i z̃ ab!]zgd

]2B
]~ i z̃ ab!]~ i z̃ gd!

G
5FA~ab!~gd! d~ab!~gd!

d~ab!~gd! B~ab!~gd!G , ~33!

whered (ab),(gd)5dagdbd1daddbg . In contrast to previous
calculations based on quantities such as free energy, the
pression for mutual information involvesn11 replicas.
ill

t

ex-

There aren(n11)/2 independent variableszab, and the
same number of independentz̃ ab. G is thus ann(n11)
3n(n11) matrix.

The transverse eigenvalues of this matrix are given by
eigenvalues of the matrix

S lA 1

1 lB
D , ~34!

wherelA andlB are the transverse eigenvalues of the s
matricesA(ab)(gd) andB(ab)(gd), respectively. Calculation o
these involves consideration of the symmetry properties
the submatrices, and is detailed in the Appendix. The eig
value equations reduce to

lA1c5l,
~35!

11clB5cl.

We thus have the two replicon-mode eigenvalues

l65 1
2 ~lA1lB!6A1

4 ~lA2lB!211. ~36!

For stability, the product of the eigenvalues must be n
negative. A further subtlety is introduced here.l1 can be
seen to be.0 irrespective ofse

2 or a. l2 , on the other
hand, changes sign, moving from negative to positive
smallerse

2. However, intuitively we expect, from the ana
ogy of the noise with the ‘‘temperature’’ parameter in oth
models of neural networks@1# and physical systems@14# that
if replica-symmetry breaking is to set in, it will do so at lo
noise variances. This is confirmed by the eminently sens
behavior of the mutual information curves of Fig. 1 at m
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dium to high noise, but nonphysical behavior at very lo
noise values. It can be concluded that, as occurs in@1,12#, a
sign reversal has been introduced due to the integration
tour, which must be corrected.

FIG. 3. A phase diagram showing the critical noise variance
a function of the threshold parameterj0—the largerj0 is, the more
linear the regime. Solid curve, sparsenessa50.05; dashed curve,
a50.10;dot-dashed curve,a50.20;dotted curve,a50.50.
n-

These equations have been numerically solved forl2 .
Figure 2 shows the behavior ofl2 for a range of sparsenes
and thresholds. Where the eigenvalue passes above the
axis ~dotted line!, a phase of RS instability is indicated. Fig
ure 2~a! is for the situation of quite sparse coding of th
patterns. As the noise is reduced from the high noise reg
in which the RS solution is stable, the eigenvalue chan
sign, and an unstable region is entered. In the case of thr
old j050.4, which represents only a very small degree
thresholdlike behavior, the eigenvalue can be seen to cu
back and change sign again at lower noise values still. D
to nonconvergence of numerical integration, it is not possi
to examine extremely small noise values; therefore it is
clear from this diagram whether the eigenvalue also fa
below zero again for the other curves plotted in this figure
if it instead has a finite value at zero noise. However, a
region of RS stability at noise variances this low would o
viously be irrelevant for the same numerical reasons.

It is apparent from Figs. 2~b! and 2~c! that as the input
distribution is made less sparse~a is increased!, the critical
amount of noise below which instability arises increas
This will be discussed again shortly. Another effect that c
be seen in Figs. 2~a! and 2~b! is that, as the neurons are mad
more linear~j0 is increased!, the critical noise first rises, the
falls. This becomes more clear after plotting a phase diag
of noise againstj0 ~Fig. 3!. For low a ~sparse distributions!,

s

FIG. 4. The phase diagram for information transmission, forr 52 andsJ
251/C. ~a! Thresholdj0520.4. ~b! Thresholdj0510.0. ~c!

Thresholdj0510.4. ~d! Thresholdj0510.8.
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the critical noise rises, falls, and then curves back around
itself—after the neurons become sufficiently linear, there
no more region of instability. As the pattern code becom
less sparse, at first the region of instability merely expan
When a reaches a certain value, however, the edge of
unstable region no longer curls in on itself, but extends o
wards. At a sparseness of 0.5, for instance, the critical n
thus first rises with increasing linearity, taking longer
reach its peak than for more sparse distributions, then f
and finally levels off and decreases slowly. The sparsene
which this change in behavior is exhibited is independen
the parameters of the system, and can be seen from Fig.
lie somewhere between 0.2 and 0.5.

In the special case of the linear limit, in whichj0→`, lA
disappears~see the Appendix!, and stability is assured. Fo
finite j0 and above the coefficient of sparseness referred t
the preceding paragraph, though, there is a distinct and
sonably large region of instability.

The resulting phase diagrams are shown in Fig. 4. Fig
4~a! shows the situation forj0520.4, which corresponds to
threshold-linear behavior. Asj0 is increased@Figs. 4~b!–
4~d!; the neurons are made progressively ‘‘more linear’’#, the
critical noise variance at which instability of the RS soluti
sets in first increases, and then decreases, as would b
pected from Fig. 3. In Fig. 4~d!, the line of critical noise
variance abruptly stops ata;0.23: at this point, the
replicon-mode eigenvalue passes below the zero axis,
stability is assured. In all cases, it is apparent that in part
lar for very sparse distributions, the replica-symmetric eq
tions are valid down to quite low noise. For less sparse c
ing, where the pattern entropy is significantly higher, t
replica-symmetry-broken solution would seem to be relev
for higher noise variances.

It should be noted that the sparseness of the distributio
outputs is not the same as that of the inputs. This can
determined by

aout5
^j&j1

2

^j2&j1
, ~37!

FIG. 5. The marginal noise variance as a functon of the spa
ness of theoutput distribution. The solid line represents the cur
for j0520.40 @the same situation as Fig. 4~a!, the dashed curve
j050.0, thedot-dashed curvej0510.40, and thedotted curve
j0510.80.Note that forj050.0 the output sparseness is fixed
1/p, as explained in the text, so this particular line is not inform
tive about the relative region of instability.
n
s
s
s.
e
t-
se

s,
at
f
to

in
a-

re

ex-

nd
u-
-

d-

t

of
e

where

^x~j!&j15E
0

` dj

A2psj
2

x~j!exp2
~j2j0!2

2sj
2 ,

sj
25se

21sJ
2C~^h2&h2^h&h

2 !. ~38!

The lines of marginal stability forj0520.4, 0.0, 0.4, and
0.80 are replotted in Fig. 5 against the output sparsen
Although the phase diagrams look fairly similar when plo
ted as a function of input sparseness, they occupy diffe
regions of the output-sparseness domain because of
thresholding. It is also worth noting that because of the m
ping performed by Eq.~37!, the boundaries of the regions i
Fig. 4 do not necessarily form the boundaries of the regi
in the output-sparseness plane, which in some instances
stitute points from inside the above curves.

For neurons operating in the threshold-linear regime~left
curve,j0,0.0!, where output sparseness is effectively co
strained by the thresholding, the stability characteristics
qualitatively as has been described earlier. Forj050.0, it is
apparent from Eqs.~37! and~38! that the output sparseness
constant~regardless of the input sparseness! at a value of
1/p. As j0 is increased above zero, the output becomes
sparse, and the line of marginal stability is flipped horizo
tally ~because in this range the entropy is higher for sma
aout; right curves!. Assuming that the sparseness of codi
in connected sets of neurons in the brain tends to be sim
the former curve~for threshold-linear behavior! might be
considered the more biologically applicable, with the thre
old in this model incorporating functionally the constraint o
the degree of neural activity.

V. CONCLUSIONS

This paper has detailed the replica-symmetric solution
the information transmitted by a feedforward network
threshold-linear neurons, and examined its stability to fl
tuations in the direction of replica-symmetry breaking. It a
pears that for sparse pattern distributions, replica-symm
breaking only sets in at noise variances sufficiently small t
we might reasonably consider them to be ‘‘beyond the rea
of biological interest,’’ at least for noisy cortical cells. W
believe that, quite importantly, there is every reason to
pect that these results carry over to the slightly more co
plicated ‘‘Schaffer collateral’’ calculation described in@8,9#.
There is thus reason to feel confidence in the repli
symmetric assumption when analyzing neural networks
areas such as the hippocampus which are known to c
sparsely.

When more distributed~less sparse! encoding is used, the
mutual information solution is prone to instability to replic
symmetry-breaking fluctuations at higher amounts of no
than in the sparse case. It is not clear from the current an
sis what the quantitative effect of broken replica symme
might be, or what the form of the exact solution would be
that case~e.g., the Parisi ansatz@15#!. Care should therefore
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be taken when analyzing the information conveyed by n
works using more distributed encoding.
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APPENDIX

In this appendix the transverse eigenvalues of the sub
tricesA(ab)(gd) andB(ab)(gd) are calculated. BothA(ab),(gd)

andB(ab),(gd) have three different types of matrix elemen
depending on whether none, one, or two replica indices
the pair~ab! equal those of the pair~gd!. The three possible
valuesA(ab),(gd) can take are

P5
]2B

]zab]zab 5
sJ

4Cr

4W

~q212pq!2

p4~p1q!4 H E
0

` dj

A2p

3~j2j0!4 expF2
~j2j0!2

2~p1q! G1E
2`

` dt

A2p

3@~j2j0!2#j2
2

~ 1
2 ,t !J ,

Q5
]2B

]zab]zag 5
sJ

4Cr

4W

~q212pq!2

p4~p1q!4 H E
0

` dj

A2p

3~j2j0!4 expF2
~j2j0!2

2~p1q! G1E
2`

` dt

A2p

3@~j2j0!2#j2~ 1
3 ,t !@~j2j0!#j2

2
~ 1

3 ,t !J
~bÞg!, ~A1!

R5
]2B

]zab]zgd 5
sJ

4Cr

4W

~q212pq!2

p4~p1q!4 H E
0

` dj

A2p
~j

2j0!4 expF2
~j2j0!2

2~p1q! G1E
2`

` dt

A2p
@~j

2j0!#j2
4

~ 1
4 ,t !J ~aÞg,bÞd!,

where@x(j)#j2(k,t) is defined as

@x~j!#j2~k,t !5E
2`

0 dj

A2p
x~j!expF2

k

2p
~j2j0!2
t-

.

r-
-
t.

a-

of

1ktS q

p~p1q! D
1/2

~j2j0!2
kt2

2 G , ~A2!

which can be considered to be a weighted average ofx(j)
over the subthreshold values ofj. k is used to normalize the
weight factor over thet integral in each of Eqs.~A1!. Also,

W5fS j0

Ap1q
D 1E

2`

` dt

A2p
fF2

j0

Ap
2tS q

p1qD 1/2G
3expF2

t2~2p1q!

4~p1q! GAp, ~A3!

andp,q are herepB andqB from Eq. ~22!.
We have to solve the eigenvalue equation

Ac5lc. ~A4!

The eigenvectorsc have the column-vector form

c5~$dzab%! ~a,b51, . . . ,n11!. ~A5!

We now proceed as described in@11#. There are three classe
of eigenvectors~and corresponding eigenvalues!—those in-
variant under interchange of all indices, those invariant un
interchange of all but one index, and those invariant un
interchange of all but two indices. These last describe
transverse mode, in which we are interested.

Let us consider fluctuations of the form

dzab5Dab ~a,b51,...,n11!, ~A6!

with

Dab5D, a,bÞa0 ,b0

Da0b5Dab05
22n

2
D, aÞa0 ,b0 ~A7!

Da0b05
~22n!~12n!

2
D

ensuring orthogonality between the eigenvectors describ
RS and RSB fluctuations. As with@11#, we have for
A(ab),(gd) an eigenvalue

lA5P22Q1R, ~A8!

with in this case@ 1
2 (n11)(n22)#-fold degeneracy, andP,

Q, andR as described above.
For B(ab),(gd), we consider fluctuations

d z̃ ab5cDab ~a,b51, . . . ,n11! ~A9!

and obtain similarly the eigenvalue

lB5P822Q81R8, ~A10!
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where

P85
]2B

]~ i z̃ ab!]~ i z̃ ab!
5E

2`

`

Dt@h2#h
2~ 1

2 ,t !,

Q85
]2B

]~ i z̃ ab!]~ i z̃ ag!
5E

2`

`

Dt@h2#h~ 1
3 ,t !@h#h

2~ 1
3 ,t !,

~A11!
s.
R85
]2B

]~ i z̃ ab!]~ i z̃ gd!
5E

2`

`

Dt@h#h
4~ 1

4 ,t !,

and @x(h)#h(k,t), the weighted pattern average, is defin
as

@x~h!#h~k,t !5E
h
dh P~h!x~h!expF2

k

2
z̃1h22ktAz̃1hG .

~A12!
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